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Circuit Model for Multiple Transverse Mode
Vertical-Cavity Surface-Emitting Lasers

Tamás Marozsák, Member, IEEE

Abstract—The modeling of multimode operation in ver-
tical-cavity surface-emitting laser diodes is difficult because
spatial interaction between modes makes the problem very
complex. In this paper, a novel circuit model is presented for such
lasers, which is based on spatially dependent rate equations, and
thus spatial hole burning and carrier diffusion are taken into
account. These effects are studied in direct-modulated microwave
vertical-cavity surface-emitting lasers by showing linear and non-
linear simulation examples in both time and frequency domains.

Index Terms—Analog modulation, circuit model, diffusion, non-
linear, spatial hole burning, vertical-cavity surface-emitting lasers
(VCSELs).

I. INTRODUCTION

VERTICAL-CAVITY surface-emitting lasers (VCSELs)
are very important light sources in optical communica-

tions. Their characteristics are very close to high-performance
edge-emitting laser characteristics with low distortion, high
modulation bandwidth, and high dynamic range [1], [2]. Their
accurate modeling is important for both device engineers and
circuit designers. The first one needs a model that simulates
complex physical phenomena, resulting in long simulation
time. The second one needs a much simpler, but relatively
accurate model implemented in a circuit simulator with fast
simulation time. The model presented here is in between: it
can be used in conventional circuit simulators, and the simu-
lation time is short, yet multiple lasing modes are simulated
with interaction mechanisms between modes, such as spatial
hole burning and carrier diffusion. Based on this model, fast
modeling of multimode dynamics and nonlinear modulation
characteristics are possible. This is important in direct-mod-
ulated microwave optical links where the laser characteristics
determine intermodulation and dynamic range.

Simulating multimode operation in semiconductor lasers is
usually done in two ways. In the first method, the rate equa-
tions are written in a spatially dependent form and are solved
by a numerical method, such as in [3] and [4]. Because the rate
equations must be solved in many spatial points, the problem
becomes technically rather difficult, which means long calcula-
tion time. On the other hand, the results can provide deep in-
formation as well, such as accurate carrier and photon density
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Fig. 1. VCSEL cavity.

distribution in the laser cavity [5]. The second method operates
with phenomenological simplifications to avoid solving the rate
equations in several spatial points. This was applied mainly to
in plane multiple longitudinal mode (MLM) lasers. The simula-
tion time is several orders less, and this way, even large signal
dynamic operation can be simulated easily. These models are
appropriate for mapping into circuit equivalents [6], [7] and for
using in circuit simulator programs where static, small signal
dynamic, and transient or large signal nonlinear behavior can
be studied. In the following, a method is shown that is a mixture
of these two: a circuit model is built for solving spatially depen-
dent multimode rate equations.

The sections are organized as follows. In Section II, the
mathematical model and the method of simplifying the spatial
problem without heuristics is shown. In Section III, a novel
equivalent circuit is shown which can model several numbers
of modes. Section IV shows simulation results and explains
the effect of diffusion and spatial hole burning. Section V
concludes the paper.

II. MULTIMODE VCSEL MODEL

A. Rate Equations

The mathematical model that will be used here for describing
the dynamics of carriers and photons in the laser is based on the
well-known rate equations. VCSELs are special lasers in two
aspects: their cavity is cylindrical, and their longitudinal size is
very small; therefore, they generally operate in only one lon-
gitudinal but several transversal modes. These modes share the
same carrier population, having time-varying distribution. This
results in time-varying coupling between them. Therefore, spa-
tial dependence of the carrier density must be taken into account
in the rate equations.

Fig. 1 shows a typical VCSEL structure where an oxide
window is used to confine carriers in the active region. In the
figure, is effective cavity length, is cavity radius, is the
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radius of current injection aperture, and are dielectric
constants of the cavity and cladding, and is the active region
thickness.

Because of the cylindrical cavity, cylindrical coordinates are
chosen. In the direction, the active region is assumed to be uni-
form; therefore, there is no dependence in the rate equations,
as follows:

(1)

(2)

where is time, and are cylindrical coordinates, and
are carrier and photon densities, is current density, and
are carrier and photon lifetimes, is local optical gain, is the
spontaneous emission factor, is the total carrier number in
the cavity, is the electron charge, and is the group velocity.
This system of equations contains several simplifications which
are often used in the literature [4], [8]–[10]. Namely, the elec-
tron recombination processes are represented simply by electron
lifetime, linear optical gain approximation will be used, and the
spontaneous emission is uniformly distributed over the cavity
independent of carrier distribution. Temperature effects will be
also neglected. These simplifications are necessary to get linear
interdependencies later in the final equations.

B. Spatial Dependence

Equations (1) and (2) must be solved so that they can be im-
plemented in a circuit simulator. This means that only time (or
frequency) can be an independent parameter, and space has to
be eliminated. This can be done by separating time and space
dependence in the equations. Two sets of orthogonal functions
must be chosen for the photon and the carrier densities, and their
weighted sum will give the total spatial distributions. The time
variation of weights, or amplitudes, will give the time depen-
dence.

For photons, the mode functions can be chosen, and using the
modal gain formulation, one can write separate photon number
rate equations for every lasing mode , as in [4], [8], and [10]. The
electric-field-mode profile can be found by solving the wave
equations in a cylindrical waveguide [11]. It is usually written
in the form of (3), where and are Bessel functions of the
first and second kind, and and are normalized lateral phase
and attenuation constants, respectively. They can be calculated
from the boundary conditions by solving the dispersion equa-
tion. If metal walls are used, would equal the th root of ,
and would be the cutoff wavenumber [12]

.
(3)

The indexes and denote the number of periods in and
directions, and the modes are labeled . Fig. 2 shows some
of the lowest order modes in a cylindrical cavity.

Fig. 2. Calculated intensity profile of VCSEL modes LP , LP , LP , and
LP .

According to (3), the azimuthal dependence of the field func-
tions is . This is separable when integrating over space
and will become a multiplication by a constant. Therefore, elim-
inating the azimuthal dependence does not considerably affect
the generality of the model. Using a one-dimensional electric-
field-mode profile, the normalized intensity mode profile is de-
fined as

(4)

Using this, the photon density in the active region can be ex-
pressed as

(5)

where is the total photon number in the th mode. will be
the time-dependent amplitude of the spatial functions , and
the total intensity can be found from . In (5), it is taken into
account that in the active region, the photon density is approxi-
mately two times higher than the average photon density due to
the optical standing wave in the laser cavity.

In order to find an appropriate function set for the carrier
density, the lasing process must be looked at more closely. The
current injection is supposed to be uniform over a disk area so
that initially the current density increases uniformly in that area.
As the first mode starts to lase, it reduces the carrier density
not uniformly but in accordance with its intensity mode pro-
file. This process makes a hole in the carrier density where the
mode has maximum intensity. This spatial-hole-burning effect
(SHB) plays an important role in the VCSEL’s operation. SHB
influences the starting of other lasing modes, which will change
the carrier profile in the same manner. This implies that the re-
sulting carrier density will be correlated with the photon density
functions; therefore, the function set should be able to write the
photon intensity mode profiles efficiently. This can be achieved
by defining the carrier density base functions as in [8], [13], and
[14], as follows:

(6)

where is the zero-order Bessel function, is the radius nor-
malizing parameter. It will equal the cavity radius as a first ap-
proximation. These functions are orthogonal if equals the th
root of , the first-order Bessel function

.
(7)
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Defining as the time-dependent amplitude of the th car-
rier density function , the total carrier density can be ex-
pressed as

(8)

Substituting (5) and (8) into the rate equations (1) and (2),
assuming uniformity in the direction, multiplying one by one
with each of the base functions, and integrating over the cavity
volume, the spatially dependent equations can be expressed as
two sets of spatially independent equations

(9)

(10)

where is current density, is differential gain, is longitu-
dinal confinement factor, is the photon lifetime in the th
mode. With the exception of , the remaining constants rep-
resent overlap integrals and can be calculated according to (11).
Equations (9) and (10) model the spatial processes by varying
the spatial function amplitudes and in time; therefore,
they have to be solved for time variation of and only.

(11)

The index is used to differ from the index used in the
double sum in (9). Both can run from 0 to , which
depends on our decision as to how many base functions we use
to describe the carrier distribution. The index runs from 1 to

, the number of possible lasing modes.
The necessity of is sometimes overlooked in the liter-

ature, or some kind of heuristic is used to avoid it [8]. In these
cases, the total carrier distribution, given by (8), will not be cor-
rect, and in most cases, the result will have negative carrier-den-
sity regions.

As a result, we have equations for carriers and for
photons. There are constants, constants,

constants and constants. The large
number of constants is the price we have to pay for eliminating
the spatial dependence from the original problem. However, if
the constants are once determined, their usage speeds up the
solution of the rate equations and makes their implementation
in a circuit simulator possible.

C. Diffusion

Carrier diffusion is very important in VCSELs; therefore, it
has to be taken into account in the model. The electron rate equa-
tion (1) must be extended by , where is the
diffusion constant, and is the Laplace operator. In cylindrical
coordinates, the Laplace operator takes the form

(12)

Applying the Laplace operator on the carrier distribution base
functions (6) gives

(13)

Using this result in the carrier rate equation (9), we get

(14)

where . This implies that there are new
constants to determine before simulation.

III. CIRCUIT EQUIVALENT

Equations (10) and (14) define a system of first-order differ-
ential equations which can be solved by a circuit simulator. The
equations have the form similar to
(assuming ), which is the Kirchoff equation for a cir-
cuit consisting of one capacitor and several current sources con-
nected parallel. The photon number and the carrier density (
and in the equations) can be represented by the voltage on
the capacitor, and the rates can be represented by the currents.
Using this idea, (10) and (14) can be modeled by the equivalent
circuit network shown in Fig. 3. This electrical network consists
of several subcircuits described previously. There are sub-
circuits for representing the number of photon equations
and subcircuits representing the number of electron
equations. Each circuit contains one capacitor and a number of
voltage-controlled current sources equal to the number of terms
on the right side of the equations. These terms are indicated in
Fig. 3 below the generators. In these definitions, the names of
currents refer to the physical process that they represent. ,

, and mean different stimulated emission-rate terms; the
other names are obvious. In each subcircuit, these currents are
different as they are defined by constants having different or

indexes. In the expressions, and become control volt-
ages measured on the capacitors of the appropriate subcircuits
( and ). The input signal of the electrical network is
given by , which is common for the current sources defined
by in each electron subcircuit. In the simulation, the
network is solved for voltages and , which represent
the number of photons in the given mode and the electron
density function amplitudes , respectively.

Altogether the network consists of capacitors and
voltage-con-

trolled current sources. This can be a large number if many op-
tical modes are allowed and many electron density functions
have to be used. Fortunately, the carrier density base functions
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Fig. 3. Equivalent circuit for solving the multimode VCSEL rate equations.

defined in (6) work very well in practice. As a result, a few car-
rier density functions are usually sufficient to get satisfying re-
sults. This means that a low value for is usually appro-
priate.

In sophisticated simulator languages, such as APLAC, it is
possible to use FOR-NEXT loops in the circuit definition and
define the ladder structures in Fig. 3 automatically. The overlap
constants of (11) are calculated once before the simulation and
stored in a separate file. The simulation file reads these constants
and uses them in the circuit definition.

Circuit simulators converge best if the currents and voltages
are in the usual range, which is from to . Therefore,
the voltages and currents in the equivalent network have to be
scaled to fall into that range. This was done by multiplying the
current of the generators and node voltages by an appropriate
value.

The electric network of Fig. 3 solves (10) and (14), which rep-
resents the intrinsic part of a laser diode. It does not include real
diode parasitics such as leakage currents and diode behavior.
However, it could be included easily by controlling the bias-cur-
rent generators with a current measured on a diode connected to
all of the parasitic circuit elements. The extrinsic laser model
can be very simple above threshold [15]; only some capacitors
and resistors are needed to add to the intrinsic laser.

IV. SIMULATION RESULTS

The validity of the model and the circuit equivalent were
checked by comparison to other models. The COST 268 action
of the European Union had an open forum for comparing sim-
ulation results obtained from the same input parameters. The
physical parameters of the laser for the following simulations
were chosen from the modeling exercise of the action. The pa-
rameters are listed in Table I.

In the laser structure, two optical modes were possible which
set to 2. The mode profiles were a priori known from op-
tical field simulations and are shown in Fig. 4. The carriers were
allowed outside the cavity radius; therefore, was
chosen in (6) for proper simulation of diffusion. In most cases,

TABLE I
LASER PARAMETERS FOR SIMULATIONS

Fig. 4. Intensity mode profiles used in the simulations.

using five base functions for the carrier density gives good re-
sults, but here, was chosen for getting very accurate
carrier distribution.

Fig. 5(a) shows the result of dc simulations in several bias
points, sweeping from 0–400 A. It can be seen that lasing starts
at 93 A with the mode. As the optical intensity
increases in this mode, a hole is created in the carrier distribution
at , as shown in Fig. 5(b). This affects the start of
mode at 256 A. Fig. 5(b) also shows that diffusion causes
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(a)

(b)

Fig. 5. (a) Result of dc simulation: bias current versus optical power. (b) Result
of dc simulation: carrier distribution at I and 3I .

Fig. 6. Result of ac simulation; modulation response of modes at 3I .

high electron density outside of the 3 m current aperture,
which is also important in starting the mode.

Fig. 6 shows the small signal modulation response for each
mode and for total intensity as result of ac simulation. In [10], it
is emphasized that the total modulation response is not a simple
sum of modulation responses of separate modes, since their
responses are not necessarily in phase. In this model, the ac
node voltages, representing photon number dynamics, are easy
to sum as complex values. Optical power is calculated after-
wards, which always gives the correct value. Strong antiphase

Fig. 7. Result of transient simulation, response to a 3I current pulse with
0 s–3 ns duration.

behavior of modes, such as in [10], could not be observed here;
the maximum phase difference was about 50 . Similar results
were achieved when the simulation was repeated with an an-
nular current distribution resulting in and operating
modes, which overlap more than and .

In Fig. 6, the mode has a stronger modulation response
than the mode up to 700 MHz; then, the opposite becomes
true. This frequency depends on the diffusion constant , which
determines how fast the diffusion can follow the modulation.
At higher modulation frequencies, the mode cannot gain
from the diffusion effect, and its response to modulation de-
creases.

The diffusion effect can be seen in Fig. 7 as well, where the
transient behavior is simulated. As the current pulse starts, the
current distribution prefers the mode. Then the spatial hole
in the carrier distribution shown in Fig. 5(b) develops and to-
gether with diffusion it causes high carrier density where
has maximum intensity; so it starts to lase. Its intensity increases
slowly as diffusion provides a slow increase in carrier density.
Fig. 5(a) showed that at 280 A , the optical power is
approximately 20 W in the mode in steady state. This
power could not be reached in 3 ns in Fig. 7 due to the high
diffusion constant. The relaxation oscillation of the curves does
not show antiphase properties of the two modes. This is in agree-
ment with the ac simulation.

The last and most important result of the paper is shown in
Fig. 8, the results of a single-tone harmonic balance simulation.
Up to the fifth harmonic of the modulating tone, at frequency

, was taken into account, but only the second and third har-
monic are presented as most important in applications of di-
rect-modulated lasers. The amplitude of the modulating signal
was , and the bias point was . In directly modulated
transmission systems, the nonlinear behavior causes distortion
and intermodulation. The generated second and third harmonic
levels simulated here are in quantitative connection with the co-
efficients of the laser nonlinear characteristic and, hence, have
special importance.

The curves show that the laser nonlinearity is increasing
toward the relaxation oscillation frequency in agreement with
theory. It also can be seen that diffusion affects the higher order
harmonics similar to the way it affects the fundamental one. The
modulation response for agrees with the result of the small
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(a)

(b)

Fig. 8. (a) Result of one tone harmonic balance simulation, with modulation
responses of harmonics. (b) Result of one tone harmonic balance simulation,
with intensity versus frequency in each mode separately.

signal (ac) analyzes in Fig. 6. As the modulating frequency be-
comes higher than approximately 700 MHz, the response
decreases in all higher order harmonics as well. This can be
important in analog application of VCSELs because external
reflectivity, such as a coupling fiber or a photodetector surface,
can enhance one mode, causing the modulation proprieties
to change severely. These diffusion-induced modes should be
avoided in properly designed VCSELs. A low optical reflection
environment is needed, even when these modes exist with low
optical power.

V. CONCLUSION

A novel equivalent circuit for modeling multiple transversal
mode behavior in VCSELs was presented. Elimination of spa-
tial dependence from the rate equations by calculating overlap
integrals and the definition of an equivalent circuit using these
constants were shown. This method made it possible to simulate
the multimode operation of VCSELs in circuit simulators. The
main advantage of the model is that the wide variety of analyses
methods implemented in circuit simulators can be applied to
the system. In this way, the study of linear and nonlinear dy-
namic behavior of such lasers is possible. This is important in
microwave optical links. Simulations have shown that the model

was in agreement with other mathematical models. The results
of dc, ac, transient, and single-tone harmonic balance simula-
tions were presented, and the effect of diffusion was studied
on the results in the linear and nonlinear regime. It was shown
that the diffusion-induced modes have slow dynamics in both
regimes. This needs attention in the design and application of
these lasers in directly modulated optical links.

ACKNOWLEDGMENT

The author would like to thank T. Berceli and R. Satz for the
valuable discussions.

REFERENCES

[1] T. Marozsák et al., “Direct modulated lasers in radio over fiber applica-
tions,” in Tech. Dig. Int. Topical Meeting Microwave Photonics, 2002,
pp. 129–132.

[2] C. Carlsson et al., “Analog modulation properties of oxide confined
VCSEL’s at microwave frequencies,” J. Lightwave Technol., vol. 20, pp.
1740––1749, Sept. 2002.

[3] J. W. Scott et al., “Modeling temperature effects and spatial hole burning
to optimize vertical-cavity,” IEEE J. Quantum Electron., vol. 29, pp.
1295–1308, May 1993.

[4] A. Valle et al., “Spatial hole burning effects on the dynamics of vertical
cavity surface-emitting laser diodes,” IEEE J. Quantum Electron., vol.
31, pp. 1423–1431, Aug. 1995.

[5] C. H. Chong and J. Sarma, “Lasing mode selection in vertical-cavity
surface-emitting laser diodes,” IEEE Photon. Technol. Lett., vol. 5, pp.
761–764, July 1993.

[6] I. Habermayer, “Nonlinear circuit model for semiconductor lasers,” Opt.
Quantum Electron., vol. 13, 1981.

[7] W. Chen and S. Liu, “Circuit model for multilongitudinal-mode semi-
conductor lasers,” IEEE J. Quantum Electron., vol. 32, pp. 2128–2132,
Dec. 1996.

[8] J. Dellunde et al., “Statistics of transverse mode turn-on dynamics in
VCSELs,” IEEE J. Quantum Electron., vol. 33, pp. 1197–1204, July
1997.

[9] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated
Circuits. New York: Wiley, 1995.

[10] M. S. Torre and H. F. Ranea-Sandoval, “Modulation response of mul-
tiple transverse modes in vertical-cavity surface-emitting lasers,” IEEE
J. Quantum Electron., vol. 36, pp. 112–117, Jan. 2000.

[11] M. Koshiba, Optical Waveguide Analysis. New York: McGraw-Hill,
1992.

[12] D. M. Pozar, Microwave Engineering. Reading, MA: Ad-
dison-Wesley, 1990.

[13] J. J. Morikuni et al., “Spatially independent VCSEL models for the sim-
ulation of diffusive turn-off transients,” J. Lightwave Technol., vol. 17,
Jan. 1999.

[14] S. F. Yu et al., “Theoretical analysis of modulation response and
second-order harmonic distortion in vertical-cavity surface-emitting
lasers,” IEEE J. Quantum Electron., vol. 32, Dec. 1996.

[15] D. Wiedenmann et al., “Design and analyzis of single-mode oxidized
VCSELs for high-speed optical interconnects,” IEEE J. Select. Topics
Quantum Electron., vol. 5, May/June 1999.

Tamás Marozsák (M’97) was born in Hungary in
1971. He received the M.Sc. degree in electrical en-
gineering from the Technical University of Budapest,
Budapest, Hungary, in 1995.

Since 1998, he has been an Assistant Professor
with the Department of Broadband Infocommuni-
cation Systems, Budapest University of Technology
and Economics, Budapest, Hungary. He is author
or coauthor of more than 50 technical papers in
the field of optical communications and microwave
photonics.


	MTT025
	Return to Contents


